Mục lục
Cùng với sự phát triển của các công nghệ analytics và advertising platforms, ngày nay trong digital marketing chúng ta có thể đo đạc được khá sâu hiệu quả của hoạt động marketing và quảng cáo thông qua các chỉ số như CPI (cost per install), CPL (cost per lead).
Các chỉ số này không chỉ được tính 1 cách chung chung mà còn còn thể chia nhỏ theo nhiều dimensions khác nhau (tuổi, giới tính, vị trí địa lý, thiết bị, hệ điều hành, định dạng quảng cáo, nội dung quảng cáo, vị trí đặt quảng cáo,…).
Tuy nhiên một người làm performance marketing sẽ hiểu rằng CPL, CPI tốt không có nghĩa kết quả kinh doanh cũng sẽ tốt. Sếp của chúng ta quan tâm đến lợi nhuận, và lead rẻ không tương đương với lợi nhuận tốt. Bài toán đo lường trong marketing cần nâng lên 1 tầm khác đó là đo lường CAC, CIR và thậm chí là CLV (Customer Lifetime Value).
Concept của kĩ thuật đo lường CAC khá đơn giản. Tổng ngân sách quảng cáo / tổng số khách hàng. CIR thì sẽ là tổng chi phí quảng cáo / tổng doanh thu (tính ngược của chỉ số ROAs).
Tuy nhiên, câu chuyện trở nên phức tạp nếu bạn muốn khám phá sâu hơn nữa. Ví dụ:
- CAC của tỉnh Thái Bình Sky’ss so với Tiền Giang cái nào tốt hơn?
- Trong tương quan giữa sản lượng khách hàng với CAC của 2 nơi này, nơi nào đáng để chi nhiều tiền quảng cáo hơn? (đánh đổi sản lượng lấy CAC rẻ, hay vít thẳng lên để lấy sản lượng cao)
- Khách hàng sử dụng điện thoại loại nào sẽ cho CIR và CAC tốt nhất?
- Tiêu đề quảng cáo như thế nào dễ dẫn đến hành vi mua hàng nhất?
Khi trả lời được những câu hỏi này, chúng ta mới có thể tự tin ra quyết định đốt tiền.
Vì sao nên dựng data warehouse
Tôi cũng từng bối rối khi gặp phải những câu hỏi kiểu này. Sau một thời gian thử nghiệm với nhiều công nghệ và phương án tích hợp khác nhau và dừng chân tại phương án tự dựng data warehouse. Một số nhận xét nhỏ giữa các công nghệ:
- Google Analytics: Việc đẩy dữ liệu chi phí lên GA là khả thi, nhưng sẽ phải làm thủ công nếu bạn chạy nhiều kênh khác ngoài Google Ads. Ngoài ra, khối lượng dữ liệu đẩy lên cũng không lớn, kém linh hoạt. Dữ liệu doanh thu có thể làm tự động nếu bạn có website thương mại điện tử và hoạt động mua bán chỉ diễn ra trên website
- Facebook Offline Conversion: Nếu bạn chỉ chạy quảng cáo Facebook, bạn có thể nghĩ đến phương án này. Tuy nhiên, theo kinh nghiệm cá nhân thì tôi thấy độ chính xác không cao, chỉ tầm 60 – 70%. Một nửa sự thật thì không phải sự thật, mà 2/3 sự thật cũng không phải sự thật. Thậm chí tôi còn không tin nổi 1 phần nào trong cái báo cáo của bọn này, vì mọi thứ đều bị giấu kín.
- Salesforce, Zoho CRM: Giải pháp của 2 bên này tôi chưa nghiên cứu sâu để có kết luận. Tuy nhiên, không phải công ty nào cũng sẵn sàng từ bỏ CRM hiện tại của mình để chuyển sang 1 giải pháp đắt tiền và phức tạp như bọn này. Còn về lợi ích của Salesforce hay Zoho, hãy để chuyên gia vào phân tích.
- Báo cáo thủ công: This is a pain in the ass. Đồng thời, bạn cũng gần như không đào sâu được gì với đám báo cáo này.
Ngoài ra còn một số nguyên nhân nữa giúp bạn cân nhắc tự dựng data warehouse:
- Quảng cáo đa kênh, mỗi kênh một kiểu dữ liệu báo cáo
- Chỉ quảng cáo Facebook, nhưng chạy nhiều tài khoản, mỗi tài khoản chạy hàng chục chiến dịch
- CRM của bạn là hàng thửa, không theo tiêu chuẩn gì
- Sales pipeline phức tạp
- Ki bo, chỉ muốn giữ data cho nội bộ, không leak ra ngoài dưới bất kỳ hình thức nào
Chia sẻ của Cuong Tran